Learning a discriminative mid-level feature for action recognition
نویسندگان
چکیده
منابع مشابه
Multi-task mid-level feature learning for micro-expression recognition
Due to the short duration and low intensity of micro-expressions, the recognition of micro-expression is still a challenging problem. In this paper, we develop a novel multi-task mid-level feature learning method to enhance the discrimination ability of extracted low-level features by learning a set of class-specific feature mappings, which would be used for generating our mid-level feature rep...
متن کاملLearning Mid-level Words on Riemannian Manifold for Action Recognition
Human action recognition remains a challenging task due to the various sources of video data and large intraclass variations. It thus becomes one of the key issues in recent research to explore effective and robust representation to handle such challenges. In this paper, we propose a novel representation approach by constructing mid-level words in videos and encoding them on Riemannian manifold...
متن کاملLearning Discriminative Activated Simplices for Action Recognition
We address the task of action recognition from a sequence of 3D human poses. This is a challenging task firstly because the poses of the same class could have large intra-class variations either caused by inaccurate 3D pose estimation or various performing styles. Also different actions, e.g., walking vs. jogging, may share similar poses which makes the representation not discriminative to diff...
متن کاملDiscriminative Topics Modelling for Action Feature Selection and Recognition
This paper presents a framework for recognising realistic human actions captured from unconstrained environments. The novelties of this work lie in three aspects. First, we propose a new action representation based on computing a rich set of descriptors from key point trajectories. Second, in order to cope with drastic changes in motion characteristics with and without camera movements, we deve...
متن کاملA Discriminative Feature Learning Approach for Deep Face Recognition
Convolutional neural networks (CNNs) have been widely used in computer vision community, significantly improving the stateof-the-art. In most of the available CNNs, the softmax loss function is used as the supervision signal to train the deep model. In order to enhance the discriminative power of the deeply learned features, this paper proposes a new supervision signal, called center loss, for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Information Sciences
سال: 2013
ISSN: 1674-733X,1869-1919
DOI: 10.1007/s11432-013-4938-y